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1.INTRODUCTION 

Since the 3D watermarking was firstly introduced by 
Ohbuchi , it is becoming an active research area during 
the last decade. 3D watermarking is inspired from the 
image watermarking and video watermarking. The 
techniques in 2D  watermarking can not be directly 
applied to 3D watermarking. Generally speaking, the 
3D watermarking can be classified into transformed 
domain watermarking and the spatial domain 
watermarking from the perspective of the embedding 
domain. Then the transformed domain methods can be 
further split into spectral methods and multiresolution 
methods. In this chapter, I will firstly comprehensively 
survey the transformed domain methods followed by 
that of the spatial domain methods. We focus mainly on 
the robust methods and briefly mention the others. Then 
we introduce the assessment methodology of the 3D 
watermarking algorithms. 
 
2. Spectral domain algorithms 
The methods of mesh spectral analysis are inspired by 
the development of spectral graph theory , signal 
processing and the kernel principal component analysis 
and spectral clustering in the computer vision and 
machine learning . The mesh spectral analysis of a 
given mesh object O with N vertices generally has the 
following three steps in common: 
1. A square Laplacian matrix L of size N × N is 
constructed. The Laplacian matrix which is a 
discretization of a continuous operator represents a  
discrete linear operator based on the connectivity of the 
input mesh. 
2. The second step is almost identical for all methods. 
This consists of to eigen decomposing the matrix L. 
3. Process the calculated eigenvalues usually by 
embedding constraints or by adding noise, i.e. 
frequency coefficients, and the eigenvectors, i.e.  
the ortho normaleigen space. The Laplacian matrix L is 
a square matrix which characterizes the pairwise 
information (also called affinity in the literature) 
between any two vertices on the mesh O, e.g., Li,j 
reflecting the weight between the ith vertex and the jth 
vertex.  
In the following of this section, the watermarking 
methods are classified according to the type of basis 
functions used in the spectral analysis. Methods based 
on Combinatorial Laplacian are firstly introduced. Most 
of the spectral 3D watermarking methods belong to this 
branch. Methods based on manifold harmonics is 
followed and lastly the other types of spectral methods. 
 
3 Combinatorial Laplacian methods 
A combinatorial Laplacian is a matrix operator that 
solely depends on the connectivity of the mesh. It treats 
the pairwise relation as a binary delta function, i.e. if vi 

is connected with vj , the corresponding entry is 1 
otherwise, is 0. The idea was firstly introduced by 
Taubin  to approximate low pass filters. Kaini et al  
compress the mesh geometry making use of the 
eigenprojections. Zhang studies several variants of 
combinatorial Laplacian and their properties for spectral 
geometry processing and JPEG-like mesh compression. 
Most of the spectral watermarking methods so far tend 
to embed the message in the spectral coefficients called 
eigenprojections in some papers. This is because the 
basis functions, i.e. eigenvectors, of the combinatorial 
Laplacian operator are stable and insensitive to the 
geometry changes since only the connectivity is 
considered in the matrix. Thus, after watermarking, the 
connectivity is not changed so the watermarked 
coefficients can always be detected. Some of the 
watermarking methods  tend to remesh the mesh object 
ensuring the connectivity is consistent. 
4.Theoretical background 
We first briefly review the theoretical background of 
spectral analysis using the combinatorial Laplacian 
based on the work proposed by Karni et al . Given a 
mesh object O containing N vertices, the Laplacian 
matrix of dimension N × N is built according to its 
connectivity as follows: 

 
where |Nvi | represents the valence of the vertex vi, i.e. 
the number of its neighbours directly connected to it. 
Then, the Laplacian matrix is eigen-decomposed as: 

 
where Ω is the diagonal matrix containing the 
eigenvalues and q is the matrix consisting of the 
eigenvectors. The eigenvector matrix q is sorted in the 
ascending order according to the magnitude of its 
corresponding eigenvalues in the diagonal matrix Ω . 
While the eigenvalues in Ω are considered as 
frequencies, q constitutes an orthonormal basis of the 
mesh O. The spectral coefficients are calculated by 
projecting the vertex coordinates on the basis functions 
defined by the eigenvectors q: 
C = qV 
where V is the matrix containing the geometry of the 
vertex coordinates. The spectral coefficients of low 
frequencies, i.e. the coefficients correspond to the small 
eigenvalues in Ω , reflects the general shape or the large 
scale information of the mesh. In contrast, the high 
frequency coefficients indicate the details or the small 
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scale information of the mesh. Figure 2.1 shows a set of 
spectral coefficients. 90% of the mesh energy is 
contained in the low frequency, while the energy in the 
high frequency is much lower. To reverse the 
transformation process, the geometry can be recovered 
as: 
V = qTC 
Figure 1: A plot of spectral coefficients 

 
Non-blind methods 
Ohbuchi et al proposed a non-blind method in 2001 in  
based on Karni’s analysis from . This is the first 3D 
watermarking method based on the spectral domain. 
The method applies the spectral analysis employing the 
basis functions of the combinatorial Laplacian. The 
message is embedded by slightly modifying the low 
frequency and medium frequency coefficients. In the 
detection stage, both the original object and the 
watermarked object need to be spectrally decomposed. 
The embedded information is retrieved by comparing 
the difference of the spectral coefficients between the 
original and the watermarked ones 
In 2002, Ohbuchi et al extended their previous work in 
three directions. The mesh size was reduced by splitting 
it into several patches. Each patch is used to carry a set 
of bits. A more efficient numerical method called 
Arnoldi is employed to eigen-decompose the Laplacian 
matrix. The Arnoldi method can calculate the leading 
spectral coefficients as required, instead of calculating 
the full set of the eigenvectors. Matrix is identical to the 
original one. The method proposed in 2002 is resistant 
to the connectivity alteration attacks like mesh 
simplification and cropping because the connectivity is 
enforced to be the same in the detection stage. This 
method is computationally more efficient as not only 
the matrix size is reduced but also the numerical routine 
for eigendecomposition is improved. 
All these methods are non-blind and the bit carriers are 
the low frequency and medium frequency coefficients. 
The main strength of these methods is the relatively 
high robustness. Nevertheless, the premises is made that 
the original object must be present in the message 
retrieval stage. There are three disadvantages. Firstly, 
the original object is required to recover the original 
connectivity. This involves extra steps and 
computational cost. Secondly, the computational cost is 
higher than spatial domain methods in general. Thirdly, 
it is hard to control the distortion.  
 

Blind methods 
Cayre and Alface et al proposed a blind algorithm  
based on the spectral domain in 2003. A mesh object 
can be considered as a three dimensional signal, i.e. (vx, 
vy, vz), we can have the corresponding spectral 
coefficient triplet (Cx,Cy,Cz). Every triplet is 
considered as an embedding primitive. The triplet is 
sorted in the ascending order and  
the maximum Cmax = max(Cx,Cy,Cz) and minimum 
value Cmin = min(Cx,Cy,Cz) are regarded as the 
modulation range.  
The mean value Mean = (Cmax + Cmin)/2 is used to 
distinguish the bits 1 and 0 intervals. When embedding 
a 1 bit, the medium coefficient is moved into the 
interval of values corresponding to the bit 1 and vice 
versa. Figure 2 shows an example of the triplet 
embedding. The embedding message is inserted 
repetitively into the low and medium frequency to 
ensure the robustness. The method is the first blind 
algorithm based on the spectral domain, but its 
robustness is very limited. 
 

 
Figure 2: Cinter is moved into the 1 bit interval when 
embedding 1 bit. Figure is taken from . 
 
Alface et al in 2005 proposed to segment the 3D object 
into patches for reducing the embedding complexity 
while the core embedding method is still the same as 
Cayre’s method . Firstly, the feature points are 
automatically selected through a multi-scale estimation 
of the curvature tensor field. Then, the algorithm 
proceeds by partitioning the mesh shape using a 
geodesic Delaunay triangulation of the detected feature 
points. Each of these geodesic triangle patches is then 
parametrized and remeshed by a subdivision strategy to 
obtain a robust base mesh. The remeshed  patches are 
watermarked in the spectral domain and original mesh 
points are finally projected on the corresponding 
watermarked patches. The automatic feature point 
detection and the patch generation are the main 
contribution of Alface’s method. The core 
watermarking process is basically identical with 
Cayre’s method. Thus, it suffers from the low 
robustness problem as well.. 
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Manifold harmonics 
Although the combinatorial Laplacian has the perfect 
reversibility and it is simple to implement, the lack of 
the geometry information makes it inadequate to 
describe the feature of an object. There is another kind 
of discrete Laplacian which deals with the geometry 
properties of the mesh, called Manifold Harmonics, 
proposed by Vallet . Its transformation is called 
Manifold Harmonics Transform (MHT).  
The Manifold Harmonics injects the geometry 
information by calculating the cotangent (cotan) 
weights of the one ring neighbourhood. The weight 
between vi and vj is measured by the cotan angle 
opposite to the edge formed by the two vertices . The 
cotan weight derived from Finite Element Modeling  
has been proved a close relationship with the surface 
curvature . They converge to the continuous Laplacian 
under certain conditions as explained in . Nonetheless, 
the cotan weights are calculated by the dual cell area of 
each vertex, which is nonsymmetric. Thus, the cotan 
weights can not be used for the spectral analysis 
directly. L´evy tried empirical symmetrization in Vallet 
et al clarify these issues based on a rigorous Discrete 
Exterior Calculus (DEC) formulation and recover 
symmetry by expressing the operator in a proper basis . 
The symmetry property ensures its eigenfunctions are 
both geometry aware and orthogonal as well. 
 
Theory background 
In this section, we clarify the theoretical issues of the 
Manifold Harmonic Transform. 
Similar to the Laplace operator in Euclidean space, the 
Laplace-Beltrami operator 
 ∆ is defined as the divergence of the gradient for 
functions defined over a manifold 
O with its metric tensor. The eigenfunction and the 
eigenvalue pair (Hk, �k) of  ∆ 
on manifold O satisfy: 
 

 
The above eigen-problem is then discretized and 
simplified within the finite element modeling 
framework as the following matrix equation: 
 

 
 
where hk = [Hk

1 ,H
k

2 , . . . ,H
k
n]

T , the N × N matrix D is 
diagonal and called lumped mass matrix as: 

 
where NFi is the number of neighbouring faces of 
vertex vi. t is a neighbour of vertex vi. |t| gives the area 
of the triangle. The matrix Q called stiffness matrix is 
also of size N × N: 
 

 
 
where αi,j and βi,j are the two angles opposite to the 
edge ViVj . The Manifold Harmonics Basis can be 
calculated by eigen-decomposing the matrix Q in 
equation . The frequencies are represented by the 
corresponding eigenvalues. Let us define vector x = (x1, 
. . . , xN) (respective y and z) containing the x 
coordinates of the mesh. With the Manifold Harmonics 
Basis, the kth spectral coefficient can be calculated as: 

 
 
Thus, the amplitude of the spectral coefficients is 
defined as: 

 
The object can be exactly reconstructed by using the 
inverse manifold harmonics transform. For coordinates 
x (resp. y, z), we have 
 

 
 
With the geometry information embedded in the 
operator, the spectrum obtained from the MHT nicely 
captures shape characteristics of the object. However, 
on the other hand, the side effect is that when the 
geometry of the mesh is changed, e.g. watermarked, the 
approximation matrix Q will be changed. Thus, if we 
apply the MHT again on the modified mesh, we can no 
longer retrieve the watermarked coefficients again. The 
causality problem is the major obstacle of using the 
MHT to design a watermarking method. People tend to 
use the iteration methods to recheck the coefficients to 
ensure a successful embedding . 
Another major contribution of Vallet’s work is a band-
by-band spectrum computation algorithm and an out-of-
core implementation that can compute thousands of 
eigenvectors for meshes with up to a million vertices. 
These make the spectral analysis directly usable in 
practice on a large mesh object, besides its common use 
as a theoretical tool. 
 
Blind methods 
Since the Manifold Harmonics Basis incorporates more 
geometry information of the mesh object, it captures 
more shape information rather than when considering 
topology only. The spectrum obtained from the MHT is 
very stable and consistent for the other object 
representations. It means that the attacks like mesh 
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simplification, resampling and remeshing, which do not 
alter the shape of the object, will not affect the spectrum 
very much. Because this feature of the MHT, it 
becomes a popular transformation technique to devise 
robust watermarking schemes. In this section, I will 
briefly introduce two recent robust and blind algorithm 
based on the manifold harmonics transform proposed 
by Vallet et al .  
 
In 2009, Konstantinides et al  proposed a blind and 
robust method based on the Oblate Spheroidal 
Harmonics. The transform is based on the use of one of 
the many variants of oblate spheroidal harmonics; 
namely the Jacobi ellipsoidal coordinates . The 
algorithm realigns the mesh object by translating the 
object onto the mass centre, uniformly normalization 
and PCA rotation. However, the robustness of these 
traditional alignment methods can be severely affected 
by attacks. Thus, a smoothing scheme is proposed prior 
to the alignment.  
 
Multi-resolution methods 
The basic idea behind multiresolution analysis is to 
decompose a complicated function into a “simpler” low 
resolution part, together with a collection of 
perturbations, called wavelet coefficients . While in the 
case of a 3D mesh object, the original 3D mesh itself is 
considered as a function. The object is analyzed using 
the so-called lazy wavelet transform  In the transform, 
the object is filtered with a wavelet function. A base 
mesh is then generated i.e. the base mesh is the analogy 
of the low-resolution function and it should be a good 
approximation of the original denser one. The 
information that is lossy in the base mesh is stored in 
the wavelet coefficients. Thereafter, the 3D object is 
iteratively analyzed using the different scale of basis 
functions. The functions with different scales are 
orthogonal. The object can be decomposed into 
different level of details as shown in Figure 2.3. The 
scheme proposed by Lounsbery et al  requires that the 
mesh must fit a 4-to-1 subdivision connectivity scheme, 
i.e. a vertex can only connect with six neighbours. 
Because of the restricted requirement of the mesh,  

Figure 2.3: Wavelet decomposition  
 
To formulate the wavelet transform in a more rigorous 
manner, we have: 
 

Vj = AjVj+1 
Wj = BjVj+1 

assuming that Vj+1 denotes the matrix whose row 
corresponds to the vertex coordinates at the resolution 
level j + 1. Then Vj is the one level lower resolution. Wj 

is the wavelet coefficients which is the lossy 
information from resolution level j + 1 to j. Aj and Bj 
are called the analysis filters at resolution level j 
producing the base mesh (base function) and the 
wavelet (lossy information), respectively. The 
transform can be reversed by adding the lossy 
information contained in the wavelet coefficients back 
to the base mesh as: 
 

Vj+1 = PjVj + QjWj 

 

where Pj and Qj are called synthesis filters. An 
interesting mathematical relation 
between the synthesis filters and the analysis filters is 
defined as: 

 
Kanai et al firstly employed the wavelet framework and 
developed a non-blind 3D watermarking algorithm in 
1998. They argue that the human eye is not sensitive to 
the small geometric changes in the bumpy areas. The 
watermark is embedded by modulating the norm of the 
wavelet coefficient vector. The change of the norm is 
determined by the look up table generated by a secret 
key. 
 
Robust methods 
Benedens et al in 1999 proposed one of the first robust 
3D watermarking methods based on the spatial domain 
in . This method groups the vertex normals as the 
watermarking bins and each bin is used to carry one bit 
of message. The message is embedded by carefully 
modifying the normal distribution of each bin. The 
experiments show that the algorithm has a good 
performance against the mesh simplification attack. 
Because the mesh simplification attack tends to 
preserve the surface and thus the vertex normals are not 
likely to be changed a lot. While it is more problematic 
in the noise attack which randomly modifies the 
geometry of the surface. 
 
Cho et al in 2007 proposed a similar statistical method  
combining the ideas of Yu et al and Zafeiriou et al. In 
this work, the vertices are firstly clustered into groups 
according to the distance from the vertex to the object 
centre i.e. ρ component of the (ρ,θ,φ) spherical 
coordinate system. The observation tells that the 
distribution of the ρ component is uniform within each 
bin. Two histogram mapping functions are introduced 
to modify the mean value and variance value of the 
distribution respectively as shown in Figure 4. The 
histogram mapping functions ensure the statistical 
condition of the distribution is satisfied while the 
Euclidean movement of the vertex is minimum. The 
method proposed by Cho et al is probably the most 
robust 3D watermarking algorithm that does not require 
the original object to retrieve the watermark. 
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Figure 4: (a) change the mean value of the distribution 
(b) change the variance of the distribution. . 
Except the robust watermarking algorithm, 
steganography and fragile watermarking are the other 
two kinds of algorithms in the watermarking family. As 
we have reviewed in the previous sections, robust 
watermarking is a technique that aims to detect the 
embedded information even when the stego medium 
suffered from a cer tain level of attacks. It is designed 
for copyright protection purpose. Steganography and 
fragile watermarking are designed with different 
motivations in mind.  
Steganography is a data transmission and storage 
technique. In this scenario, the capacity is the most 
important criteria to evaluate a steganography algorithm 
but not the robustness. This branch of algorithms 
usually use every vertex as a embedding primitive. The 
sequence of the embedded message can be determined 
by the connectivity . The capacity can be increased by 
quantization , subdivision , angles  and multilayer 
embedding .  
Fragile watermarking, on the contrary to the robust 
watermarking, is designed that the watermark should 
disappear when any attacks happens to the stego 
medium.  
Robust 3D watermarking assessment 
Figure 1.1 illustrates the three most important aspects in 
the robust 3D watermarking algorithm: distortion, 
robustness and the capacity. For a robust and blind 
watermarking algorithm used for the purpose of 
copyright protection, most methods accept that the 
payload of the embedded watermark is 64 bits. Thus, 
most of the evaluation work are focused on the other 
two parts i.e. distortion and robustness. In this section, I 
will present the assessment approaches that are used in 
the literature. 
 

CONCLUSION 
In conclusion, the watermarking methods based on the 
regular wavelet transform . There are four main 
advantages of using the wavelet transform. 
1. As the norm of wavelet vector implicitly characterize 
the bumpiness of the local surface, and human eyes are 
not sensitive to the changes in the bumpy areas,  
2. The watermarks can be embedded in different 
resolution levels. Furthermore, as the low resolution 

represents the low frequency and high resolution 
contains more about the high frequency .  
3. Not only the wavelet coefficient vector can be 
watermarked, but also the base mesh. This gives a 
broader range of the embedding domain. 
4. The lazy wavelet transform enables researchers to 
define a clear geometric relation between the surface 
distortion and the upper bound of the modification of 
each wavelet coefficient vector. 

LIMITATION 
1 The mesh must be in a 4-to-1 subdivision connectivity 
schemes. Every vertex can only have six neighbours. 
2. This class of methods are not robust against any 
connectivity attacks like mesh simplification, cropping 
and remeshing etc. 
 
Spatial domain algorithms 
There are three characteristics of the spatial domain 
methods. 

1. First of all, it is easy to apply constraints on 
the mesh and the constraint can be easily 
recovered and detected blindly.  

2. Secondly, because the geometry and 
connectivity define the appearance of the 
surface, it enables the user to explicitly control 
the watermarking distortion on the object 
surface.  

3. Finally, spatial domain method does not have 
the extra transformation steps, they are much 
more computationally efficient than the 
transformed domain methods. These three 
features determines that the spatial domain is 
more suitable for blind or fragile watermarking 
as well as for steganography applications. 

From the purpose or the application point of view, the 
3D methods can be classified into three sets: 1.          
Robust watermarking, . Steganography and Fragile 
watermarking. Almost all transform domain methods 
are robust watermarking algorithms with a few 
exceptions of the wavelet methods. In fact, although the 
wavelet transform analyze the object using a set of 
orthogonal basis functions, the manipulations are 
directly on the geometry. On the other hand, spatial 
domain is used in all the three classes of algorithms. In 
my research, all my methods are blind and robust 
watermarking algorithms. Therefore, in this literature 
review of the spatial domain methods, I will mainly 
focus on the robust methods in the spatial domain. 
Steganography and the fragile watermarking will be 
briefly reviewed for completion. 
 

DISCUSSION 
There are various of transformation methods proposed 
in the last decade such as spectral decomposition, 
multiresolution analysis, DCT and Radial Basis 
Function etc. Informally speaking, the methods based 
on the transformed domain try to analogize the 
techniques from the 2D data to 3D data. Although the 
transformed domain algorithms are relatively successful 
in the conventional data type, they do not gain the same 
success in 3D. The most important reason is that a 3D 
object is not regular sampled, the connectivity is not 
regular either.  
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So far, the spatial domain has been used in fragile 
watermarking, steganography and robust watermarking 
algorithms . There are basically two ways to embed the 
watermark. The first approach we name it as “single 
embedding” consists of using a single vertex as an 
embedding primitive and implement some constraint to 
carry the message. The second one named “statistical 
embedding” consists of modifying statistical features. 
Single embedding is mostly used in the fragile 
watermarking and steganography because it is not 
robust to attacks. However, its distortion is low and 
easy to control. Statistical embedding, on the other 
hand, consist of using the statistical description as the 
embedding primitive. So it is generally more robust. 
The trade-off is the relative high distortion. 
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